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Functions of cholesterol

* Makes the bilayer more
impermeable

* Thickens the bilayer

* Sphingolipids and cholesterol
associate with each other



Sphingolipid-cholesterol rafts
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Simons & Ikonen, 1997
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Adapted from D. Lingwood and K. Simons, Science 327:46-50, 2010.
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Internalization and Intoxication of Human Macrophages by the
Active Subunit of the Aggregatibacter actinomycetemcomitans
Cytolethal Distending Toxin Is Dependent Upon Cellugyrin
(Synaptogyrin-2)

Kathleen Boesze-Battaglia, Anuradha Dhingra , Lisa M. Walker, Ali Zekavat and
Bruce J. Shenker

nal Research The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is a
heterotrimeric AB2 toxin capable of inducing cell cycle arrest and apoptosis in lymphocytes and other cell
types. Recently, we have demonstrated that human macrophages ...
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Infection: A Mini-Review
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Mini Review Listeria monocytogenes is a Gram-positive foodborne bacterial pathogen capable of interacting
and crossing the intestinal barrier, blood—brain barrier, and placental barrier to cause deadly infection with high
mortality. L. monocytogenes is an ...

Published on 11 August 2020
Front. Immunol. doi: 10.3389/fimmu.20

1,445 total views | Altmetric

Membrane Cholesterol Is Crucial for Clostridium difficile
Surface Layer Protein Binding and Triggering Inflammasome
Activation

Yu Chen, Kai Huang, Liang-Kuei Chen, Hui-Yu Wu, Chih-Yu Hsu , Yau-Sheng Tsai
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Enveloped viruses acquire membrane
by budding
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alphaviruses influenza virus
(e.g., Sinbdis virus)




Sequence of events in viral membrane fusion
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Low-pH triggered conformational change
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HA trimer: pH 7 pH<5.5 HA monomer. pH 7 pH<5.5




HA undergoes two irreversible changes ...
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ost-transiational
cleavage
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hemagglutinin (HA):

three functions

1. receptor binding
2. antigenic variation
3. fusion
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FIGURE 1 | Schematic representation of the role of lipid rafts in Coronavirus infection of the host cells is a multistep endocytic process characterized by a series of
complex events tightly regulated in space and time. Step 1 Entry process of coronavirus into the host cells is initiated by the binding of the spike glycoprotein with
the specific receptor (ACE2, APN/CD13) located into lipid rafts/caveolae. This interaction causes conformational changes of the viral particle, which trigger specific
signaling events necessary for the viral entry mechanism. Step 2 Lipid rafts/caveolae-mediated endocytosis is followed by intracellular trafficking of virus particles in
transport vesicles (early and late endosomes). The low pH in late endosomes induces a conformational change in coronavirus that mediates fusion of the viral
envelope with the endosomal membrane. Step 3 Viral genomes are translated in two polyproteins, pp1a and pp1ab, which encode the non-structural viral proteins
that form the replication transcription complex. This complex produces genomic RNA as well as multiple subgenomic mRNAs encoding structural proteins.
Translation of mMRNA encoding for the nucleocapsid proteins occurs in the cytoplasm where the newly synthesized proteins interact with new genomes to form
ribonucleoprotein particles. In contrast, matrix, envelope and spike proteins translation occurs into the ER. Coronavirus uses also the autophagy machinery for
replication and has evolved strategies to avoid autophagy-induced lysosomal degradation. Step 4 After assembly the progeny viral particles, virus-containing
vesicles (smooth-wall vesicles) are budded and released into the extracellular environment through fusion with the plasma membrane (exocytosis). Alternatively, we
speculate that coronavirus might utilize multivescicular bodies (MVBs) and take advantage of the exosomal pathway for egress.




Fusion mechanism
A. Cleave precursor (“prime”)
B. Localize virus to cell
(by receptor binding) ‘
C. Trigger refolding
(by co-receptor, low pH, etc.)
1. Expose fusion peptide
2. Insert fusion peptide into
target membrane
3. Fold back to bring together
target and viral membranes
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Figure 10-34
Copyright © 2015 W. W. Norton & Company, Inc.
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Introduction

https://www.google.pt/search?q=endoplasmic+reticulum-+cell+clips&source=Imns&tbm=vid&bih=762&biw=14
40&hl=en&sa=X&ved=2ahUKEwjRhcCVq8TOAhUUWKQEHQkKRCqEQ_AUoAnoECAEQAg#fpstate=ive&vl

d=cid:71f82298 ,vid: TmQKHHBS51P8



Introduction

Figure 12-27 Molecular Biology of the Cell 6e (© Garland Science 2015)



Peroxisomes Use Molecular Oxygen and Hydrogen Peroxide to

Perform Oxidation Reactions

vacuole
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. mitochondrion
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Figure 12-29 Molecular Biology of the Cell 6e (© Garland Science 2015)



A Short Signal Sequence Directs the Import of Proteins into

Peroxisomes
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Figure 12-30 Molecular Biology of the Cell 6e (© Garland Science 2015)
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Introduction

*Cell membrane
*Endosomes

*Lysosomes

https://www .youtube.com/watch?v=TmQKHHBS51P8&t=135s



The ER Is Structurally and Functionally Diverse
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Figure 12-32 Molecular Biology of the Cell 6e (© Garland Science 2015)
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The ER Is Structurally and Functionally Diverse
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Signal Sequences Were First Discovered in Proteins Imported into
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Figure 12-35 Molecular Biology of the Cell 6e (© Garland Science 2015)



Translocation Across the ER Membrane Does Not Always Require

Ongoing Polypeptide Chain Elongation
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Figure 12-41 Molecular Biology of the Cell 6e (© Garland Science 2015)



In Single-Pass Transmembrane Proteins, a Single Internal ER Signal

Sequence Remains in the Lipid Bilayer as a Membrane-spanning o Helix
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Figure 12-42 Molecular Biology of the Cell 6e (© Garland Science 2015)



In Single-Pass Transmembrane Proteins, a Single Internal ER Signal

Sequence Remains in the Lipid Bilayer as a Membrane-spanning o Helix
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Figure 12-43 Molecular Biology of the Cell 6e (© Garland Science 2015)



Combinations of Start-Transfer and Stop-Transfer Signals Determine

the Topology of Multipass Transmembrane Proteins
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Figure 12-45 Molecular Biology of the Cell 6e (© Garland Science 2015)



Combinations of Start-Transfer and Stop-Transfer Signals Determine

the Topology of Multipass Transmembrane Proteins
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